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Abstract—Intensive pixel shading dominates the power dissipa-
tion of the graphics pipeline as the screen resolution grows. In this
work, we propose a 130.3 mW 16-core mobile GPUwith three pixel
approximation techniques and a corresponding tile-based rasteri-
zation architecture. The proposed architecture can trade-off be-
tween power consumption and visual quality to provide power-
aware capability, and is fabricated with TSMC 45 nm technology.
The feasibility and effectiveness of these techniques are verified in
this chip prototype. The implementation results show that, with
satisfactory visual quality, 52.32% of the power consumption of
the shader processors can be empirically reduced with an experi-
mental Approximated Precision Shader architecture and a Screen-
space Approximated Lighting technique. Furthermore, the Approx-
imated Texturing technique can reduce 24.57% of L1 cache updates
in our evaluation.

Index Terms—Approximated Precision Shader, Approximated
Texturing, Screen-Space Approximated Lighting.

I. INTRODUCTION

T HEMOBILE graphics processing unit (GPU) has become
an essential component inmobile devices especially as the

display resolution rapidly grows [1]. A typical GPU pipeline
is shown in Fig. 1 with steps indicated by the numbers. The
thread number are arbitrary chosen for explaining the hardware
pipeline. 1) First, vertex data, such as vertex positions, normals
and texture coordinates are fetched into the input data buffer.
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Fig. 1. A general GPU architecture and hardware pipeline.

For a triangle, three vertex threads are launched among the uni-
fied shaders for vertex transformation. 2) The transformed ver-
tices in the internal buffer are assembled into a triangle. 3) With
the transformed triangle, the information of the pixels in screen
space is generated through interpolation in the raster unit. In
this example, ten pixels are generated. Subsequently, ten pixel
threads are lunched in the unified shaders for executing pixel
programs, which include lighting and texturing effects, to shade
pixels. 4) The shaded pixels are stored to internal buffer. 5) Ac-
cording to the corresponding pixel depth, stencil and alpha, ROP
unit conducts the visibility test and blends pixel color of each
pixel, which is then output to the framebuffer.
There are various researches [2]–[8] aiming at optimizing the

mobile GPU design in architecture and circuit levels. Tsao et al.
[2], [3] target at efficient instructions reordering, accelerating in-
structions for multimedia applications and efficient configurable
memory buffer. Nam et al. [4] focus on the micro-architecture
design of the shader processor, including instruction set archi-
tecture and logarithmic datapath. Chang et al. [5], [6] propose a
configurable filtering unit, efficient buffer transaction technique
and pixel duplication scheme for energy saving. Kim et al. [7],
[8] enhancememory bandwidth through process technology and
extend the vector processor configuration for Augmented Re-
ality (AR) applications.
The energy saving scheme with pixel duplication proposed

by Chang et al. [5], [6] exploits the trade-off between approxi-
mated image quality and power consumption to achieve power
efficiency. However, the pixel duplication scheme simply saves
power consumption without considering visual quality. Moti-
vated by this idea, we developed a series of pixel approximation
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techniques on screen pixels. The concept of pixel approximation
is quite similar to the prediction and reconstruction process in
image compression, and we can approximate pixel values under
certain observations:
• The precision loss of the arithmetic operations in a graphics
pipeline is barely perceived in some cases.

• Smooth textures change slightly between different scales.
• Illumination often varies smoothly in spatial domain.

Based on these concepts, a power-aware 16-core GPU is de-
veloped with our proposed approximation techniques. Experi-
mental results empirically reveal that these proposed techniques
can better approximate certain visual effects, meanwhile low-
ering the power consumption or memory dynamics. The pro-
posed approximation techniques are featured in this chip proto-
type as follows
(a) Approximated Precision Shader (APS) architecture is

an experimental heterogeneous multi-core architecture,
where lower power consumption can be achieved by par-
tially distributing workload to lightweight shader cores.

(b) Approximated Texturing (AT) mechanism reduces the
memory request of texture access by adaptively ap-
proximating the texture information with the concept of
wavelet transform.

(c) Scree-space Approximated Lighting (SSAL) technique can
approximate the illumination with adaptive sampling pat-
terns and plane fitting.

Similar to lossy image compression, where the perceptual
redundancy of the data is removed, in our work, the redundancy
in computation is saved to reduce the power consumption.
Compared with the pixel duplication scheme [5], [6], the
proposed SSAL further improves the quality loss caused by
direct pixel duplication with better sampling and reconstruction
strategies, such as linear interpolation, averaging and splatting
based on certain sampling patterns. The proposed mobile GPU
can achieve low power consumption while visual quality is
well preserved with these approximation techniques.
This paper is organized as follows. Section II elaborates the

proposed architecture. The proposed tile-based raster unit is first
introduced in Section III. Then the three proposed approxima-
tion techniques are thoroughly described in Sections IV–VI.
Section VII summarize the implementation results and compar-
isons between state-of-the-art designs. Finally, Section IX con-
cludes this work.

II. ARCHITECTURE OVERVIEW

The architecture overview of the proposed mobile GPU is
shown in Fig. 2. The GPU architecture majorly consists of four
shader clusters. There are four unified shader cores, which is
denoted as US in Fig. 2, a texture unit, and a corresponding
texture L1 cache, in each shader cluster. Thus, sixteen active
vector threads can concurrently perform either vertex program
or pixel program in parallel. Our unified shader architetcure is
a four-channel Single-Instruction-Multiple-Data (SIMD) pro-
cessor. The SIMD processor is illustrated in Fig. 3. It has four
pipeline stages, including Fetch, Decode, Execute, and Write
Back stages. During Fetch stage, the instruction fetch unit in-
crementally fetches instructions from the instruction cache ac-
cording to the current program counter. In addition, the fetch

Fig. 2. Architecture overview of the proposed 16-core mobile GPU.

Fig. 3. The four-channel SIMD architecture.

unit needs to be aware of the occurrence of Jump instruction.
The instruction is then decoded during the Decode stage to re-
trieve the op (operation) code, source and destination operands.
With the source operands, the Execution stage activates the cor-
responding datapath or the ALU channels based on the vector
type (i.e., vec2, vec3 or vec4). The operands can be accessed
from the register file, constant cache (i.e., uniform in GLSL),
input buffer (i.e., vertex attribute or pixel varying in GLSL)
or the output buffer. These operands are in 32 bit representa-
tion. Each ALU channel has fundamental arithmetic units such
as floating point multiplier, adder, comparators, logic operations
and absolute values, as shown in Fig. 4. In addition to the ALU
channels, the execution stage can perform vector swizzle and
summation operations; texture handler is responsible for issuing
texture requests to the texture unit with texture ID (i.e., texture
sampler in GLSL), coordinate and Level of Detail (LOD). Fi-
nally, the Write Back stage forwards the result from Execution
stage to the register file or the output buffer. The output buffer
then dispatches the computed output to the vertex or pixel output
buffer depending on the current thread type (i.e., vertex or pixel
thread).
The proposed Approximated Precision Shader (APS) tech-

nique is realized in Shader Cluster 3. Current configuration is
adopted for empirically evaluating the effectiveness of APS.
Besides, for each texture unit, the proposed Approximated Tex-
turing (AT) mechanism is implemented. In addition to the tex-
ture L1 cache, an extra bias buffer is designed for supporting the
Approximated Texturing technique. To reduce the external tex-
ture bandwidth, a texture L2 cache is integrated as well. Both
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Fig. 4. ALU channel of the SIMD processor.

vertex attribute and pixel varying buffers are based on our pre-
vious proposed configurable memory array architecture [2]. The
data fetch unit is responsible for accessing data from the external
memory. The threads among shader cores are scheduled by the
task dispatcher. To achieve the proposed Scree-space Approx-
imated Lighting (SSAL) technique, the dispatcher is utilized to
orchestrate the unified shaders, the screen-space subdivision test
unit and the screen-space reconstruction unit.

III. TILE-BASED RASTER UNIT

The raster unit is used to generate the variables, which is
defined as varying in the GLSL standard, of pixels covered by
the projected triangle in screen space. The rasterization process
has been comprehensively studied [9]–[11]. The concept is to
examine the potential screen pixel positions of a triangle based
on the edge equations. Tile-based rasterization [12], [13], where
pixels are scanned tile-by-tile, is proved to provide better cache
efficiency with higher data locality [14]. The tile-based scheme
can be taken as a two-level scanning process: tile traversal and
interior traversal passes, where the tile traversal pass scans
the screen tiles in a designed order, and the interior traversal
pass scans the pixels within the tile. All these previous works
[9]–[13] concentrate on discussing the rasterization algorithm.
In this work, a tile-based hardware raster with two-level scan-
ning process is realized with a set of ALU. Our raster unit
traverses and interpolates the tiled pixels with a designed
scanning order from the primitive edges, with which we can
regularly schedule the ALU set to increase or decrease the
value of pixel varyings according to the corresponding plane
coefficients. Moreover, the interior traversal unit is modified
and coupled with the thread dispatcher for SSAL to detect the
approximation patterns.

A. Rasterization With Edge and Plane Equations
Generally, the edge equations are adopted for the raterization

process and can be generalized as

(1)

where the parameters , , and are derived from the three
edges of the input triangle during the triangle setup stage. For
each projected pixel on the edge, it maintains the property
that . Therefore, the projected pixels on the positive
side of the normal return , and for
the pixels on the negative side. A pixel is determined inside the
projected triangle if it is on the positive side of the three edges.
In our design, a general plane equation form is utilized to to

interpolate the projected pixels. As shown in Fig. 5, assuming
that an input triangle with vertices and the corresponding
scalar variables , where ), the implicit form of a
plane equation for a triangle is , which can

Fig. 5. A triangle with scalar variables , , and at vertices , , and
, respectively.

Fig. 6. Proposed tile scan algorithm.

be derived with , where . The scalar variable
of a pixel can thus be interpolated based on the equation,

.
Our raster engine adopts the two-level scheme. During the tile

traversal pass, the screen tiles covered by a triangle are identi-
fied. As shown in Fig. 6, we first derive the bounding box of
a triangle in tile level, as the red box indicates. Next, the scan-
ning process starts from the tile covering the top vertex, which
is assigned as the Start Tile, and then processes by tile lines.
The scan order is from the Start Tile to the right, and then from
the Start Tile to the left. The scanned tile is examined by veri-
fying the four corner pixels of a tile with the edge equations to
determine if the tile is completely inside the triangle, and the
scanning process is terminated while the scanned tile is outside
the triangle. The last tile covered by the triangle in the current
tile row is recorded, and the tile below it is assigned as the Start
Tile of the next tile traversal process, as shown in Fig. 6.
Regarding the interior traversal pass, the pixels within a tile

which passes the tile traversal stage are then scanned. To reduce
the computational complexity, the value of each pixel sample
can be derived merely with an addition because the value of the
neighboring pixel is already evaluated. When a pixel is
previously scanned, the value of the next pixel can be
derived with the following equation:

(2)

The values of all pixels within a tile can be derived through
iterating this process.

B. Proposed Hardware Architecture of Tile-Based Raster Unit
The architecture of our tile-based raster unit is shown in

Fig. 7. To meet the cost efficiency requirement on a mobile
platform, it is designed with a folded and pipelined architecture.
Our design is mainly composed of four modules, including
triangle setup, tile traversal, interior traversal and interpolation
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Fig. 7. Hardware pipeline of the proposed raster unit.

unit. Two SRAMmodules are introduced among these modules
as the intermediate coefficient storage.
To setup all plane equations, including the scalar values and

the edge functions as described in Section III-A, the triangle
setup module is designed, which is composed of the cross
product, addition and division arithmetic units. With properly
scheduling and folding the computation on the ALU set, the
coefficients of the plane equations are derived and stored in the
intermediate plane equation SRAM.
The traversal unit is composed of two modules, including tile

traversal and interior traversal. The tile traversal module realizes
the tile scanning process by checking the plane equations of the
four corner pixels of each tile. If a tile potentially has pixels
covered by the triangle, it is further forwarded to the interior
traversal module to examine the covered pixels. The covered
pixels are first recorded as a binary valid map for each tile (i.e.,
32 bits for a 4 8 tile). The order of interior traversal starts from
the leftmost column to the right. The interior traversal module
generates the corresponding scalar values of the plane equation
for the four pixels of the leftmost column and stores the values
into the tile scalar value SRAM. With the values of the stored
leftmost pixels, the interpolation unit can directly realize (2).
Pixel variables, such as position and the associated varying, are
generated for a 16 pixel set in parallel.

IV. APPROXIMATED PRECISION SHADER
In this work, we target at OpenGL ES 2.0 specification and

employ 32 bit floating point representation for the computation.
Although the variables of shader programs are represented as
floating point numbers, the shaded pixel color are converted into
a limited integer representation ranging from 0–255 for display.
Since the real-time rendering applications are not accuracy-ori-
ented, Pool et al. [15], [16] propose a precision reduction tech-
nique in either vertex or pixel shader to reduce power consump-
tion. On the other hand, ARM proposes a heterogeneous pro-
cessor architecture to enhance energy efficiency [17]. Heteroge-
neous architecture becomes a future trend for improving energy
efficiency.
There are various approximation domains for a shader ar-

chitecture. In the early OpenGL specification, half-precision
floating-point format for computation is adopted; general
fixed-point concept can also be applied. The shader processor
design [4] proposed by Nam et al. approximates the arithmetic
operations in logarithmic domain. The design purpose is to
approximate computation while executing a program, from the

computation perspective. From the perspective of rendering,
since the PSNR quality of the output pixels is less sensitive to
precision loss, Pool et al. [16] propose an adaptive precision
selection approach, including a corresponding compiler design.
They simulate the adaptive precision technique on the Attila
GPU simulator [18]. Although the precision reduction strategy
is similar to the early half-precision floating-point format, the
purpose differs. The precision reduction method approximates
the floating-point format to reduce power consumption, where
the half-precision floating point is a previous OpenGL target
specification.
Motivated by these design concepts, the proposed Approxi-

mated Precision Shader (APS) architecture for pixel program
is realized in Shader Cluster 3. With this technique, the power
consumption of the shader processor array is reduced with tol-
erable quality degradation. As Fig. 8(a) illustrates, the 32 bit
IEEE 754 representation is composed of 1 sign bit, 8 exponent
bits and 23 mantissa bits. If we truncate the 16 least significant
mantissa bits, we can have an approximated floating point rep-
resentation. Take as an example, the full 32 bits representa-
tion is 3.1415927, and it becomes 3.140625 with our truncated
16 bits representation. Regarding the pixel color, the right-hand
side of Fig. 8(a) shows an example for comparison between the
full bits representation and truncated version. The color differ-
ence is barely perceived. Note that the logarithmic arithmetic
based SIMD processor [4] proposed by Nam et al. is an opti-
mized processor architecture, where the approximation loss is
merely induced due to the logarithmic arithmetic conversion.
In our design, APS discards mantissa bits, which intends to re-
duce the size of registers and combinational logics for saving
power. The main concept of APS is to approximate the output
from pixel shader. Since the floating point pixel value is further
quantized to 0 to 255 during ROP, the approximated precision
loss has less impact on the quality degradation of pixels.
The proposed architecture is shown in Fig. 8(b). The logical

pixel threads are distributed to the shader clusters by task dis-
patcher with a task FIFO of the rasterized pixels. For the APS
processor, the vector ALUs and the corresponding registers are
resized as the truncated 16 bit precision. We preserve the pre-
cision of registers for pixel positions and interpolated texture
coordinates. Since the rasterized position determines the pixel
position on framebuffer, it is sensitive to precision loss, and a
MOV (move) instruction is first performed in the pixel pro-
gram to store the full precision position, including depth, into
output buffer. Besides pixel position, texture coordinate, which
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Fig. 8. The proposed Approximated Precision Shader technique. (a) Simple illustration of truncated floating point representation. (b)The proposed APS architec-
ture.

Fig. 9. Illustration of the standard texture mipmapping concept. Magnification accesses lower level of texture image, while minification accesses higher level of
texture image.

locates the texels on texture images, is sensitive to precision loss
as well. Another set of full-precision register is also preserved
for texture coordinates to issue texture fetch. Before storing the
computed color value to the output buffer, the approximated
16 bit color value needs to be padded with zeros to a 32 bit
representation. Our implementation results of the approximated
precision shader reveal that the area is 61% compared with a
full precision shader. The average power consumption of per-
forming a pixel program in our SIMD and APS SIMD processor
are 2.57 mW and 1.42 mW, respectively. Thus, the power con-
sumption of the APS SIMD processor is about 55% compared
with our full precision SIMD processor. In this chip prototype,
our purpose is to reduce power consumption through approx-
imating pixel values. The APS concept is different from the
heterogeneous cores of the ARM processor, which is designed
for various workload characteristics. Although our shader pro-
cessors perform the same pixel program, the APS cores deliver
the approximated pixel output with lower power consumption.
Therefore, the APS can be a simple scheme with less implemen-
tation overhead on the shader processor for a low power design.
The proposed APS technique can be regarded as a static hard-

ware implementation of the reduced precision method proposed
by Pool et al. [16]. In their simulation on the Attila GPU ar-
chitecture [18], with a similar but different test case of per-
forming screen-space ambient occlusion (SSAO), which is also
a smooth illumination effect on a single object, it can achieve
power saving in shader processor of 49% and 71% based on
their ALU power model with reduced precision, respectively 21
and 13 mantissa bits. Therefore, in their approach for the SSAO
case, the average precision using for computation are 29 and 21

bits. Based on our SIMD architecture, we reduce the power con-
sumption around 45% with the truncated 16 bit APS shader. In
terms of power saving, the comparison is within an acceptable
range.
Note that, although the precision of the rasterized position and

depth are preserved, complex shader computation might cause
error propagation from the precision loss. Currently, our com-
piler is not an optimized design to relieve this issue, which still
needs to be handled by the programmers. In the future, dedi-
cated compiler design will be further considered.

V. APPROXIMATED TEXTURING
Mipmapping [19] is a texture filtering process to generate

correct texture scale for each pixel with a pre-filtered texture
pyramid. The driver constructs a texture pyramid for each LOD
(Level of Detail) before the rendering pipeline, as shown in
Fig. 9. The LOD parameter is used to indicate the scale within
the texture pyramid, and to fetch texels for the trilinear filtering
process. Each trilinear filtering operation requires four texels
from two neighboring levels, and total eight texels are required.
With the rasterized texture coordinate of a pixel— ,
each request from the shaders for the texture unit leads to at most
eight texel lookups.
The proposed Approximated Texturing (AT) technique targets

at reducing the cache updating activities with satisfactory ap-
proximated visual quality through accessing smaller memory
footprint of the texture image, which means accessing the tex-
ture contents in higher LOD. First, the texture content is pre-an-
alyzed with the wavelet transform to evaluate the texture com-
plexity. We denote the original texture image as and the
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Fig. 10. Concept of the proposed indirectly approximated texturing technique.

mipmaps as where is in half resolution
of . Given the texture mipmaps, the high-pass filtered images
of can be constructed, namely

(3)

(4)

(5)

where denotes the texel value at LOD and coordi-
nate . These high-passed images describe the local de-
tails. The set of images denotes the
wavelet transform images in different sub-bands of texture .
The total energy of the high-pass images ,
and is then quantized to the levels of texture com-
plexity. The dimension of the texture complexity map is the
same as the mipmapped texture pyramid. Each pixel on the
texture complexity pyramid represents the corresponding bias
level to bias the LOD. With the corresponding complexity level
for each texel, we can replace the lower LOD texel requests to
higher LOD to get similar quality with smaller memory foot-
print. In this work, we use 2 bits to represent the LOD bias,
which means each texel can be approximated with texels at
3-level upper at most.
Fig. 10 illustrates an example of a texture with the corre-

sponding texture complexity map. It shows that the edges and
textured regions are highlighted, indicating that these parts
should not be approximated aggressively with higher LOD
texture. On the other hand, the smooth texture regions are
darker in the texture complexity map, which means that these
regions can be better approximated. The numbers indicate the
approximation process, and there is an extra indirect texture
access (i.e., Step 2) to the texture complexity mipmap to lookup
the LOD bias. In our implementation, the 2 bit bias represents
the LOD bias levels ranging from 0 (original texture fetch) to
3. The texture buffer bandwidth can then be reduced as the
texel requests shift to higher LOD, and the cache performance
is improved by accessing smaller memory footprint. As the

Fig. 11. The proposed architecture of indirectly approximated texturing tech-
nique.

Fig. 12. Average texture L1 cache request in KBytes.

example illustrates, the LOD is shifted from 0 to 1 based
on the bias. The quality degradation is well controlled with
considering the characteristics of texture content recorded in
the texture complexity map.
Fig. 11 illustrates the proposed architecture. The LOD bias

offset in the LOD Bias Buffer is first retrieved back for the tex-
ture coordinate generation unit. Regarding the 2 bit LOD bias,
it is quite compact to be buffered compared with the 24 bit or
32 bit texture (i.e., RGB or RGBA format). The texture coor-
dinate generation unit can then compute the texture coordinate
and LOD based on the LOD bias. Later, the texel fetch unit is-
sues texel requests from the L1 cache with the computed texture
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Fig. 13. Quality comparisons between references and approximated texturing technique. From left to right, the triangle numbers of these models are 0.8 K, 2 K,
2.7 K and 1.5 K. (a) to (d) are the reference texture mapped results, and (e) to (h) are the corresponding approximated textured results. The PSNR, which includes
the quality degradation caused by the APS technique, for (e) to (h) are 29.61 dB, 39.97 dB, 36.63 dB and 39.55 dB, respectively; without introducing the quality
loss caused by APS, the PSNR are 29.64 dB, 40.16 dB, 36.64 dB and 39.69 dB, respectively. (a). Bug (Ref.) (b). Mask (Ref.) (c). CS (Ref.) (d). Salmon (Ref.) (e).
Bug (AT) (f). Mask (AT) (g). CS (AT) (h). Salmon (AT).

coordinate. The texture filtering unit needs the updated LOD to
generate the filtering coefficients as well.
The proposed technique is verified through evaluating the L1

cache performance in terms of the reduction of cache updating
activities and the corresponding approximated visual quality.
The test models with the corresponding view settings are shown
in Fig. 13, where each is rendered to a 512 512 viewport.With
considering the quality loss induced by the approximated preci-
sion shader technique, the average visual quality in PSNR can
achieve to 36.4 dB, and Fig. 13 shows the perceptual quality is
well-controlled. Fig. 12 summarizes the L1 cache performance
with the proposed technique. The proposed GPU architecture
has one texture unit and its corresponding L1 cache for each
shader cluster. The pixel tasks are almost evenly distributed
among the shader clusters, and the evaluation shows the average
performance of the four texture L1 caches. Our empirical evalu-
ation reveals 24.57% reduction of L1 cache request in average.

VI. SCREEN-SPACE APPROXIMATED LIGHTING
In previous researches, Chang et al. [5], [6] propose an ap-

proximation technique, which is a pixel duplication scheme,
to aggressively reduce the switching power dissipation among
shader processors and the corresponding buffers, meanwhile,
sacrificing the visual quality. Fig. 14 shows an example of how
the pixel duplication scheme operates in a tile-based rasteri-
zation architecture. During rasterization, the raster unit checks
each rasterized 4 4 tile to select only one pixel inside the tri-
angle for executing pixel program as shown in Fig. 14(a). After
pixel shading, the shaded color will be directly duplicated to
other unshaded pixels in the ROP stage as Fig. 14(b) illustrates.
Based on this design concept, an improved approximation

technique is proposed in this work. Since illumination is usu-
ally revealed locally smooth on object surfaces, the discontin-

Fig. 14. Pixel duplication scheme proposed by Chang et al. [5], [6].

uous high-frequency illumination occurs near geometric silhou-
ette edges. It is reasonable to approximate the illumination in
the forward lighting pass. Therefore, a tile-based screen-space
approximated lighting (SSAL) technique is proposed to piece-
wise-linearly approximate or interpolate the un-shaded pixels
with the shaded pixels. The degree of approximation relates to
the area of a projected triangle, and the corresponding idea is
shown in Fig. 15(a). Within the tile-based rasterization process
described in Section III, a tile is hierarchically subdivided to 4
4 and 2 2 screen sub-tiles granularities. The proposed tech-

nique, different from the previous approaches [5], [6], examines
the four corners of a 4 4 sub-tile to determine if the tile is com-
pletely covered or not. If a 4 4 sub-tile is completely within
the triangle, the un-sampled pixels is approximated based on a
linear plane equation, , where the coeffi-
cients are derived with least square fitting:

...
...

...
... (6)

(7)
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Fig. 15. (a). The sampling pattern of screen-space subdivision test. (b). Pixels
for lighting. (c). The approximated results.

where is the position of pixel and represents the
illumination intensity. is the matrix composed of shaded
pixel positions, and comprises the corresponding intensities
in (6); is the fitted plane coefficient vector . Since the
sampling positions are pre-determined for the 4 4 sub-tile
approximation (i.e., the four tile corners), the inverse matrix
can be established in advance. The other 12 un-shaded pixels
can then be approximated by simple linear operations. If the
4 4 sub-tile check is not passed, that is, not all four corners
are inside the triangle, the approximation further shifts to 2

2 granularity. Fig. 15(a) shows the sampling patterns for
the full and partial 2 2 interpolation scheme, where the
two black dots are the sampled pixels for shading, and their
shaded results are splatted to neighboring un-shaded pixels.
Moreover, the one point splat scheme for a 1 2 or 2 1 case
directly splats the intensity of the shaded pixel to the neigh-
boring un-shaded one. Fig. 15(b) illustrates an example of the
sampled pixel for lighting, and Fig. 15(c) is the corresponding
approximated results.
The proposed architecture is shown in Fig. 16. The raster en-

gine adopts the Screen-space Subdivision Test unit to determine
the approximation schemes during the tile traversal process de-
scribed in Section III. The unit performs simple logic operations
for checking specific pixel positions within a tile. After the ap-
proximated patterns are decided, the raster will notify the task
dispatcher to issue pixel threads, which are needed to be exe-
cuted, to the shader clusters. The interpolated input variables
of the sampled pixels, such as position and varying, are stored
in the input buffer. In addition, the pixel positions of the ap-
proximated pixels are stored into the Approximation Position
Buffer. Based on the task ID, shader clusters can access the pixel
input variables of a pixel program. After shading the sampled
pixels, the shader processor stores the corresponding pixel posi-
tion and color to the output buffer. Next, the task dispatcher trig-
gers the ROP unit to approximate the rest un-shaded pixels. The

Fig. 16. The proposed screen-space approximated lighting architecture.

Screen-space ReconstructionUnit collects the shaded pixels and
approximates the others. For the 4 4 plane fitting pattern, the
Coefficient Gen Unit generates the set of plane coefficients (i.e.,

and ) for later interpolation. For the 2 2 approximation
pattern, the unit simply averages the two shaded pixel color
stored for splatting. The rest of one-point splat cases simply
reuse the buffered shaded color.
The proposed architecture and approximation flow of the

ROP Engine are illustrated in Fig. 17. Before the approximation
phase, the shaded pixels are dispatched to the shaded pixel
color buffer in the Coefficient Gen Unit. The Coefficient Gen
Unit then generates the corresponding plane coefficients and
interpolate the un-shaded pixels for the 4 4 case. For the
other cases, the pixel is approximated based on the 2 2 inter-
polation or one point splatting scheme. Finally, the visibility of
the approximated pixel still needs to be examined through the
depth and stencil tests before updating the color cache.
Fig. 18 shows the approximated results and the original

ones for subjective evaluation. Furthermore, we summarize the
approximation quality in Table I. These models are illuminated
by a point light source. Considering the quality loss caused by
the approximated precision shader cluster, the average PSNR is
43.16 dB for the 768 768 viewport setting, and 41.25 dB for
the 512 512 viewport. Our lighting shader program is similar
to Fast TnL, which performs lighting on vertices and rasterize
the intensity, including diffuse and specular components. We
then multiply the rasterized lighting intensity components with
pixel color. The compiled pixel shader program has 7 vector
instructions for our SIMD processors. Since the quality degra-
dation is barely perceived due to the high PSNR performance,
Fig. 18 simply lists 768 768 cases for reference. According to
our observation, the average PSNR of 512 512 viewport case
is smaller than the 768 768 case. The possible reason is that,
since the SSAL is performed in screen space, the illumination
distribution reveals more smooth variation while the projected
triangle is larger as the viewport size grows. The piecewise ap-
proximation patterns can deliver better approximation quality.
Fig. 19(a) illustrates the percentage of power reduction among



2220 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 50, NO. 9, SEPTEMBER 2015

Fig. 17. The detailed architecture of the proposed ROP engine which supports screen-space approximated lighting.

Fig. 18. Screen-space approximated lighting results: From left to right, the triangle numbers of these models are 0.8 K, 13.6 K, 5.1 K and 2 K. From (a) to (d) are
the reference lighting results of 768 768 viewport case; from (e) to (h) are the corresponding approximated results. The quality degradation caused by the APS
technique is considered as well.

the shader clusters and the corresponding memory buffers.
Moreover, the power reduction brought by the approximated
precision shader (APS) technique is shown as well. It shows
that the percentage of power reduction is 47.5% in average, and
52.32% with APS technique. The corresponding approximated
quality are 42.3 dB and 42.2 dB in average. Fig. 19(b) shows
the quality and performance comparisons between the pro-
posed technique and the work of Chang et al. [5], [6], where
we only average the lighting cases for fair comparison since
the quality of textured cases of [5], [6] degrade seriously by
the pixel duplication scheme. In [5], [6], the average visual
quality for 2 2 approximation is 36.8 dB and 31.4 dB for 4

4 case. The corresponding percentage of estimated power
reduction are 54% and 75.5% respectively. In terms of stability
of visual quality, [5], [6] reveals higher variation. Our proposed
architecture can provide a relative high (over 5.4 dB) and stable
visual quality.

Fig. 19. Performance evaluation of SSAL technique. (a). Percentage of power
reduction. (b). Compared with pixel duplication scheme proposed by Chang et
al. [5], [6].

VII. IMPLEMENTATION RESULTS

The prototype chip is fabricated with TSMC 45 nm tech-
nology. The corresponding chip specification and micrograph
is shown in Table II and Fig. 20. The chip area is ,
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TABLE I
SSAL QUALITY SUMMARY UNDER VIEWPORT SIZE

AT 768 768 AND 512 512 CASES

and the core area is . The TD is in short for task dis-
patcher, DF for data fetch unit. Maximum throughput of arith-
metic operation can reach to 33.6 GFLOPS while the working
frequency is 350 MHz. The power consumption is 130.3 mW
with the workload of activating the whole GPU pipeline in-
cluding transformation, rasterization and ROP per primitive.
Considering the rendering performance, 2.8 G vertices/s and 5.6
G pixels/s can be achieved. In our evaluation, the power reduc-
tion ratio of the shader clusters for the Approximated Precision
architecture is 11.25%, 47.5% with Screen-space Approximated
Lighting technique, and 52.32% when combining both tech-
niques, as Fig. 21(a) shows. Regarding the introduced interpola-
tion unit and Coefficient Gen Unit for SSAL, the average power
dissipation are about 0.1% and 0.4% of the whole chip, respec-
tively. The overheads are quite insignificant. Table II also sum-
marizes the specification comparisons. Note that, the arithmetic
performance of [5] is higher because the texture unit is designed
as a programmable processor named as configurable texture unit
(CFU), which is not implemented in this work. Since [7] is not
a dedicated design for graphics, we only list it here as a refer-
ence. To compare with state-of-the-art related mobile GPUs [4],
[5], [7], we adopt Mvertices/s per mW as a performance index,
which is derived while all the unified shader processors are com-
puting vertex transformation. The reference comparisons are
done with normalizing the process technology for each work
for fair comparison, according to . Note that our ar-
chitecture includes four texture units and a 64 Kbytes texture L2
cache, we exclude the power consumption of two texture units
and L2 cache to compare with these works for fair comparison.
Compared with these works, our design is 10.93 over [7], 3.87
over [5] and 1.5 over [4] as Fig. 21(b) shows.

VIII. LIMITATIONS AND FUTURE WORKS

In this work, we perform approximation to reduce power con-
sumption on the hardware GPU pipeline from algorithm per-
spective. There are certain issues worthy of further improving.
1) Aliasing and Temporal Coherency: Since the proposed

SSAL is performed per tile basis with certain static sampling
patterns, which is limited to the tile-based architecture, the
aliasing effect might happen. Moreover, the temporal coherency
needs to be maintained for these approaches. In the future,
we will focus on improving the approximation quality with
better sampling strategy, meanwhile considering the temporal
coherency cross multiple frames.
2) Limited Evaluation: Currently, the evaluations are con-

ducted with simple shader programs on an object. Since the pro-

Fig. 20. The fabricated chip micrograph.

Fig. 21. Performance evaluation. (a). Power reduction ratio with proposed
techniques. (b). Performance comparison with state-of-the-art design.

TABLE II
SPECIFICATION COMPARISON AMONG STATE-OF-THE-ART MOBILE GPUS

posed techniques are directly performed in the forward hard-
ware pipeline of a GPU, the evaluation may be not complete.
However, our purpose is to evaluate the effectiveness of our
proposed schemes for lighting and texturing, which may be bi-
ased when incorporating multiple shader effects. As for the test
scenes, a scene is generally composed of multiple objects, and
our evaluation for single object can be superposed since the cur-
rent PSNR evaluation excludes the unshaded pixels. These pro-
posed techniques can simply be regarded as extensions of the
shader effects. In the future, we will explore the possibilities of
the proposed techniques to more flexible shader usages.
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3) Thread Scheduling Policy: Furthermore, we will explore
the possibility of the scheduling policy among the heteroge-
neous processor configuration to achieve the multi-level power
adjustment through dynamic thread scheduling. The power con-
sumption can be further controlled with finer granularity.
4) Analysis on APS Processor Configuration: Currently,

the purpose of APS in this hardware prototype is to verify the
level of induced quality degradation while partially lowering
the power consumption with the APS processor. Therefore, the
configuration is an experimental setting. Moreover, it is difficult
to conduct a precise trade-off analysis since the complexity of
shader programs varies. To properly program the APS, we also
need a dedicated compiler design as Pool et al. [16] proposed.
However, we can still estimate the trend of the trade-off.

Since an APS cluster can relatively reduce about 45% power
consumption compared with a full precision shader cluster, we
can linearly scale the percentage of power reduction. While
executing approximately 25% pixels, about 11.25% power
consumption is saved in the current hardware configuration.
Respectively, 22.5%, 33.75% and 45% power consumption
might be saved while the number of the APS clusters is in-
creased from 2 to 4, and combined with the full precision
shader clusters to form the combinations of a GPU with four
shader clusters. Regarding quality, for the texturing case, one
set of APS causes 0.1 dB PSNR degradation in average; for
the lighting case, one set of APS causes 0.14 dB and 0.1 dB
PSNR degradation in average, under the viewport size of 768
768 and 512 512, respectively. The PSNR might not reveal
significant degradation while adopting other configurations.
Note that the quality evaluation is under our simple test cases.
In the future, a complete trade-off analysis will be further
explored, which requires amount of empirical evaluations on
various shader effects and scene complexities.
5) Multiple-Voltage-Domain Design: Multiple-voltage-do-

main design is a possible solution to further achieve low power
consumption. Since the APS shader cluster is a lightweight ar-
chitecture, the critical path is shorter than that of the full preci-
sion ALU units. The APS shader cluster might be able to be real-
ized with lower supplied voltage while the operating frequency
remains the same. It could be our potential future research direc-
tion regarding power saving in a hybrid processor architecture.

IX. CONCLUSIONS

In this work, a 130.3 mW 16-core mobile GPU is proposed
with three power-aware approximation techniques to enhance
the energy efficiency. The experimental Approximated Preci-
sion Shader architecture requires 55% power consumption for
executing a pixel program in our empirical evaluation, and the
area of the approximated precision shader cluster is 61% com-
pared with a full precision shader cluster. In addition, 24.57%
of the texture L1 cache request is reduced with the proposed
Approximated Texturing technique. Moreover, the Screen-space
Approximated Lighting technique can save 47.5% of power con-
sumption in processor switching activities, and 52.32% if com-
bined with the Approximated Precision technique. These tech-
niques are empirically verified for the effectiveness of power

saving and memory dynamics meanwhile maintaining satisfac-
tory approximation visual quality.
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